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Case 1: Study Areas and Datasets
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Study Areas and Datasets
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Radiative transfer-Simplified Model

𝑅𝑅 0− = 𝑅𝑅∞ 1 − exp −𝑔𝑔 � 𝑑𝑑 + 𝐴𝐴𝑑𝑑 exp −𝑔𝑔 � 𝑑𝑑

= 𝑅𝑅∞ + 𝐴𝐴𝑑𝑑 − 𝑅𝑅∞ exp(−𝑔𝑔 � 𝑑𝑑)

Benthic contrastWater column reflectance Effective attenuation Depth
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Simplified model given by Philpot (1989):

• Linear method (Principal Component Analysis, PCA);
• Band ratio method.
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Radiative Transfer - Airborne LiDAR Bathymetry 

𝑆𝑆𝑡𝑡 𝑡𝑡 = 𝑆𝑆𝑠𝑠 𝑡𝑡 + 𝑆𝑆𝑐𝑐 𝑡𝑡 +𝑆𝑆𝑏𝑏 𝑡𝑡
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• Complex radiative transfer models;
• Many factors are involved;
• Difficulties to predict the performance 

of a specific bathymetric LiDAR

Figure 1 and 2 are courtesy of Guenther, (2007)
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Hyperspectral Imagery vs. Bathymetric LiDAR

Pros:
1. Fine spectral information; benefits classification, 

bathymetry retrieval, improved bathymetry, etc. 
2. Flexibility of deployment.

Pros:
1. Direct measurements; 
2. Relatively consistent accuracy;
3. High flexibility of deployment;
4. Better penetration due to the higher energy of laser 

pulse used. 

Cons:
1. Field data;
2. Recorded in digital numbers;
3. Optimal collection time near local noon;
4. Complex radiative transfer process;
5. Tradeoff between spatial and spectral resolution.

Cons:
1. Monochromatic observation;
2. Turbidity affects the measurements significantly; 
3. Limited algorithms. 

Hyperspectral imagery Bathymetric LiDAR

6



University of Houston � Geosensing System Engineering and Science � National Center for Airborne Laser Mapping

From full waveform to orthowaveforms-Voxelization

• Georeference of the recorded full waveform;

• Digital Terrain Model (DTM, generated from LiDAR) was applied;

• Generate orthowaveforms with voxelization. 

Park, J. Y.; Ramnath, V.; Tuell, G. Using lidar waveforms to detect environmental hazards through 
visualization of the water column. In OCEANS 2014 - TAIPEI; IEEE, 2014; pp. 1–5.
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Hyperspectral vs. Orthowaveforms-Snake River

Orthowaveform imagery has 0.6 m for the pixel size and 0.2 m for the vertical resolution

Hyperspectral Orthowaveform
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Hyperspectral vs. Orthowaveforms-Blue/Colorado 
River

Orthowaveform imagery has 1.2 m for the pixel size and 0.2 m for the vertical resolution

Hyperspectral Orthowaveform
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Support Vector Regression (SVR)

• SVR is an advanced non-parametric regression algorithm (no explicit model);
• Kernel function is used for reprojection;
• Cross-validation is used to search for the optimum SVR coefficients (data 

dependent).

Chang, C.-C.; Lin, C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27.
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Bathymetry retrieval-Snake River

Hyperspectral Orthowaveform Fusion
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Bathymetry retrieval-Snake River
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Bathymetry retrieval-Blue/Colorado River

Hyperspectral Hyperwaveform Fusion
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Bathymetry retrieval-Blue/Colorado River
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Water turbidity retrieval-Blue/Colorado River

15



University of Houston � Geosensing System Engineering and Science � National Center for Airborne Laser Mapping

Water turbidity retrieval-Blue/Colorado River
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Orthowaveforms vs. full waveform bathymetry

Orthowaveform outperforms full waveform decomposition in more turbid water 
(Blue/Colorado River)
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Problems

• SVR is a supervised method; training data is required!

• Only the turbidity is retrieved; other water column 

characteristics parameters are expected; 

• More fusion strategies need to be investigated. 
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Case 2: Study area

• The East Pass is located in Destin, Florida. Outlet for Choctawhatchee Bay
• 423 ADCP depth samples cocollected with the airborne datasets 
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Data acquisition

LiDAR (532, 1064, 1550, nm) Optical
Pulse width (ns) 2.5, 2.5, 2.5 N/A
Field of view (°) 30, 30, 30 N/A
Beam divergence (mrad) 0.7, 0.35, 0.35 N/A
Pulse rate (kHz) 100,100,100 N/A
Flight height (m) 300 to 500 2200
Point density (pts/m2) 4.0, 4.0, 4.0 N/A
Number of bands N/A 48
Pixel size (m) N/A 1

Principal acquisition parameters Field white sand spectra

White sand prevails at the study area and the field measured white sand spectra is used 
in the seminanalytical model
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Radiative transfer-Two alternatives

Mobley’s HydroLight numerical simulation package. 
• Use Monte Carlo techniques and probability theory to simulate the 

radiative transfer process in water  body; 
• This model is simple and very general;
• Forward Model and not invertible; 
• Commercial package. 

Lee’s Semianalytical model
• An “approximation” to HydroLight software package; 
• Combine the analytical and empirical models; 
• Invertible!
• Widely implemented. 
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Radiative transfer-Subsurface reflectance

𝑟𝑟 𝜆𝜆 = 𝑟𝑟∞ 𝜆𝜆 1 − 𝑒𝑒− 𝑘𝑘𝑑𝑑(𝜆𝜆)+𝑘𝑘𝑢𝑢𝑐𝑐 𝜆𝜆 𝑑𝑑 +
𝑅𝑅0,𝐵𝐵(𝜆𝜆)

𝜋𝜋
𝑒𝑒− 𝑘𝑘𝑑𝑑(𝜆𝜆)+𝑘𝑘𝑢𝑢𝑏𝑏 𝜆𝜆 𝑑𝑑

• 𝑟𝑟 𝜆𝜆 is the subsurface remote sensing reflectance;
• 𝑟𝑟∞ 𝜆𝜆 is the deep water remote sensing reflectance;
• 𝑘𝑘𝑑𝑑 𝜆𝜆 is the downward attenuation coefficient;
• 𝑘𝑘𝑢𝑢𝑐𝑐 𝜆𝜆 is the upward water column attenuation coefficient;
• 𝑘𝑘𝑢𝑢𝑏𝑏 𝜆𝜆 is the upward benthic attenuation coefficient;
• 𝑅𝑅0,𝐵𝐵 𝜆𝜆 is the normalized benthic albedo;
• 𝑑𝑑 is the water optical depth.

Subsurface remote sensing reflectance: 

22



University of Houston � Geosensing System Engineering and Science � National Center for Airborne Laser Mapping

Radiative transfer-Water attenuation coefficients

𝑘𝑘𝑑𝑑 𝜆𝜆 =
𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏(𝜆𝜆)

cos(𝜃𝜃𝑠𝑠)

𝑘𝑘𝑢𝑢𝑐𝑐 𝜆𝜆 =
1

cos 𝜃𝜃𝑣𝑣
(1.03(𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏 𝜆𝜆 ))(1 + 2.4

𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏(𝜆𝜆)

)
0.5

𝑘𝑘𝑢𝑢𝑏𝑏 𝜆𝜆 =
1

cos 𝜃𝜃𝑣𝑣
(1.04(𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏 𝜆𝜆 ))(1 + 5.4

𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏(𝜆𝜆)

)
0.5

𝑟𝑟∞ 𝜆𝜆 = (0.084 + 0.17
𝑏𝑏𝑏𝑏(𝜆𝜆)

𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏(𝜆𝜆)
)

𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎 𝜆𝜆 + 𝑏𝑏𝑏𝑏(𝜆𝜆)

• 𝑎𝑎 𝜆𝜆 is the water absorption coefficient;
• 𝑏𝑏𝑏𝑏 𝜆𝜆 is the water backscattering coefficient;
• 𝜃𝜃𝑠𝑠 is the solar zenith angle;
• 𝜃𝜃𝑣𝑣 is the view angle. 
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Radiative transfer-IOPs

𝑎𝑎 𝜆𝜆 = 𝑎𝑎𝑤𝑤 𝜆𝜆 + 𝑎𝑎0 𝜆𝜆 + 𝑎𝑎1 𝜆𝜆 ln 0.06𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.65 0.06𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.65

+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒−𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆−𝜆𝜆0 + 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁∗ 𝜆𝜆0 𝑒𝑒−𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝜆𝜆−𝜆𝜆0

𝑏𝑏𝑏𝑏 𝜆𝜆 = 𝑏𝑏𝑏𝑏,𝑤𝑤 𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏,𝐶𝐶𝐶𝐶𝐶𝐶
∗ 𝜆𝜆1

𝜆𝜆1
𝜆𝜆

𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶
+ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏,𝑁𝑁𝑁𝑁𝑁𝑁

∗ 𝜆𝜆1
𝜆𝜆1
𝜆𝜆

𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁

• 𝑎𝑎𝑤𝑤 𝜆𝜆 , 𝑏𝑏𝑏𝑏,𝑤𝑤(𝜆𝜆) are the IOPs (Inherence Optical Properties, absorption and 
backscattering coefficients respectively) for pure sea water;

• 𝑎𝑎0 𝜆𝜆 , 𝑎𝑎1(𝜆𝜆) are the wavelength dependent model coefficients;
• 𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁∗ 𝜆𝜆0 is the NAP absorption coefficient at the reference wavelength
• 𝑏𝑏𝑏𝑏,𝐶𝐶𝐶𝐶𝐶𝐶

∗ (𝜆𝜆1), 𝑏𝑏𝑏𝑏,𝑁𝑁𝑁𝑁𝑁𝑁
∗ (𝜆𝜆1) are the  backscattering coefficients at the reference 

wavelength for CHL and NAP;
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , CCDOM, CNAP are the water constituent concentrations;
• 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 are the spectral slope constants for CDOM and NAP;
• 𝜆𝜆0, 𝜆𝜆1are the reference wavelengths;
• 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁 are the power law exponents for CHL and NAP. 
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Radiative transfer-Water leaving reflectance

𝑅𝑅 𝜆𝜆 =
0.5𝑟𝑟(𝜆𝜆)

1 − 1.5𝑟𝑟(𝜆𝜆)

𝑅𝑅 𝜆𝜆 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁,𝑑𝑑)

𝑅𝑅 𝜆𝜆 is the water leaving reflectance, that has taken account of the internal 
water refraction at the water-air interface. 

The water leaving reflectance can be described as a function of the 
chlorophyll, color dissolved organic matter, non-algal particles and water 
depth: 
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LiDAR bathymetry and ADCP depths

• LiDAR measures water depth up to ~7 m
• ADCP water depths match LiDAR depths well with 𝑅𝑅2 of 0.93
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Nonlinear Least Square method (nLSQ)

arg min�
𝑖𝑖=0

𝑛𝑛 𝐑𝐑 − 𝐫𝐫 2

𝐑𝐑

The objective function is: 

An example of the nLSQ modeled result and the original spectra: 
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nLSQ, ranges and initial values

The range and the initial value for each parameter is determined through the unbounded 
nLSQ method due to the lack of the field measurements. 

*The range and the initial value are critical for nLSQ because of it searches for the 
local minima. 
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Artificial spectra

Artificial spectra is produced using the forward semianalytical model fed 
with artificial environmental parameters and water depths;

The example spectra generated with fixed water column characteristics and 
the varying water depths:  
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SVR-Sampling strategy

𝑅𝑅 𝜆𝜆 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁,𝑑𝑑)

Two sampling strategies are available: 

Exhaustive sampling: make fine resolution samples for every parameter and make 
combinations (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁𝑑𝑑, here 𝑁𝑁 is the number of 
samples). 

Pros: Accurate 
Cons: Computationally expensive! 

Random sampling: randomly select combinations within the specified range.

Pros: Light computation
Cons: Less accurate

A sensitivity analysis was performed to investigate the influence of the number of 
samples for calibration. 
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mSVR, sensitivity analysis

Training sample size is determined as 1000 according to the sensitivity analysis. Each 
experiment will be repeated for 40 times, the mean and the standard deviation values are 
reported  

Sensitivity analysis: increase the sample size from 100 to 1000 and each 
experiment was repeated for 10 times, the mean and the standard deviation of 
RMSE are used to determine the optimal calibration sample size. 
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Data fusion, constraint with LiDAR

𝑅𝑅 𝜆𝜆 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁,𝑑𝑑)Semianalytical Model:

The water depth 𝑑𝑑 can be input from LiDAR bathymetry. 

nLSQ: the LiDAR depths are used to constrain the solution and reduce the 
number of parameter from 4 to 3; 

mSVR: the LiDAR depth map is concatenated in the hyperspectral 
imagery as the extra feature.
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nLSQ, unconstrained

(a) is the CHL concentration map,
(b) is the measure of CDOM, 
(c) is the NAP concentration map,
(d) is the water bathymetry
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nLSQ, constrained

(a) is the CHL concentration map,
(b) is the measure of CDOM, 
(c) is the NAP concentration map,
(d) is the water bathymetry
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mSVR, unconstrained

(a) is the CHL concentration map,
(b) is the measure of CDOM, 
(c) is the NAP concentration map,
(d) is the water bathymetry
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mSVR, “constrained”

(a) is the CHL concentration map,
(b) is the measure of CDOM, 
(c) is the NAP concentration map,
(d) is the water bathymetry
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Comparison-Four bathymetry products

• ASVR
The bathymetry product estimated with SVR method and ADCP 

field measured water depth samples (423 samples)
• LSVR

The bathymetry product estimated with SVR method and LiDAR 
measured water depths (1000 samples)
• nLSQ

The bathymetry product estimated with the nLSQ unconstrained 
method
• mSVR

The bathymetry product estimated with the mSVR unconstrained 
method (1000 samples)
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Bathymetry products comparison

(a) ASVR bathymetry map, 
(b) LSVR bathymetry map, 
(c) nLSQ bathymetry map, 
(d) mSVR bathymetry map. 
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Comparison

• LSVR yielded the best accuracy;
• ASVR yielded the least accuracy;
• nLSQ and mSVR both show 

offsets to the LiDAR depths;
• nLSQ and mSVR both show 

moderate accuracy. 
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Bathymetry products comparison

LSVR deviates after 5 meters due to less samples available in this range, mSVR and nLSQ 
deviate after 6 meters due to the insignificant benthic reflectance. 
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Discussion

Several potential improvements for a further study: 

1. Alternative chlorophyll spectra models or field measured chlorophyll 
spectra; 

2. Experiments with varying benthic types site, regularizing techniques 
applied in the semianalytical model; 

3. Hyperspectral imagery has better performance than the fusion in this 
study, but the fusion needs more investigations;  

4. Better LiDAR bathymetry product with deeper penetration is desired 
to fully assess the benefits of fusing LiDAR and hyperspectral 
imagery; 
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Thanks
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