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This equation can be solved for {nkD)m“,g. for desired values of Ap, Py,
and 4. given knowledge of the parameters and performance of the first system.

For purposes of i1lustration, the AOL results will be extrapolated to a
prospective system. For simplicity, assume g = 1, Ay = Ay, and 47 = ¢p.

Equation (B-13) then becomes
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The peak output power of the AOL was roughly 1 kW (Pyy), and the performance
to be extrapolated was a nighttime result of DOp,, = 5.5 m achieved from a
150-m altitude for ¢ = 117, a = 2.75 m'l, k= 0.5 m'l, wy ~ 0.9, and np = 1.3,
The predicted “extinction coefficient" for our proposed alternate system is
then

Tn Pp (kN) + 7.30

(AKD) 0 o (8-15)

If wa are interested, for example, in predicting penetration with 280-kW peak
pulse power, the result would be

(nkp) =10 232 0‘; 7.30 . 6.3, (8-16)

For water with K = 0,15 m~1 (n = 1.19), for example, this would be achieved at

a depth of Dy, = 35 ma It is understoed, of course, that a larger receiver
field of view is required to maintain F = 1 for these deeper depths.

The specific AOL performance cited as an input to this calculation can be
used in a more general case with Eq. (8=13) to predict penetration for any
shot-noise limited system under similar nighttime conditions given the
additional information that for the AOL, AR = 730 CITIZ, and the transceiver
nighttime optical efficiency is n = 0.25.
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AIRBOENE LIDAR BATHYMETRY II

As aresult of beamrefraction atthe watersurface, the sounding beam stationary radiance just below the
interface, takes the form I'z(s_.s,;n_.n,) (note that subscript @ in the symbol I'; is omitted and, in
view of (3.3.17), the power losses due to Fresnel reflection are taken into account):

I'z(s_.spnoiny) =cosBy - H7Px
D (.s‘a:ms&1 Sa1 Y. n _.s‘a:::os"‘ﬂ‘1 .5 (ﬂ _ sﬁ) (3.3.66)
H,@, 'H.0 = nH,cos8, 7 nH,

Here symbol »n (without a subscript) denotes the refractive index of the seawater; “angles™ ng_, ng,
reckoned from z,-axis are related to n_, n, (counted from z -axis, the lidar beam axis in the water) by
the following equations:
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The equations are valid within the context of the small-angle approximation [see (3.3.30)]. This can be
demonstrated by applying a Taylor decomposition {Taylor series) to both sides of the equality sin(8_ +
n,.) =Nsin(8, +n_). Forsmall enough n,_, n_, the zeroth order temn is siné_ = Nsing,, (the ordinary
forn of Snell's Law), and the first order temm is sind = Nsind,

Let us rewrite {(3.3.68) as
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The final tagk is to determme the mdiance, I'z(z.rn,) in the equivalent geometry; the mdiance.
distnbution along the interface plane (“just above™ or “just below™ has the same meaning in the
equivalent problem) must coincide with our model (3.3.68), (3.3.69). In the equivalent problem, the
formula coincides with the far-field approximation (3.3 63) ofradiance projected on the interface plane by
the stationary astigmatic light beam.

Note that, forthe beam, the spatial and angular dependences cannot be separated, ie, function Aisa
function of both r and n. Such a beam does not have a “waist”™ plane, rather, there are two different
planes for z=const comesponding to a minimal spot size in one (that is, “=" or “ 1™) of the two orthogonal
directions:




UNSLATTERED
RN

G+h < Ca+b+ a

FIGURE&-2,AIR PATH GEOMETRY

SURFACE

15T DOWNWELLING PATH
IND DOWNWELLING PATH

UPWELLING PATHS FOR
COMEBINATION

FIGURE 6-3.PATH PAIRING EXAMPLE

water surface

Agber
t=tM_T

Figure 5.2.4. “Geometric stretch” of bottom-reflected lidar
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 Equations:

e Microsoft Equation editor
e References:

e RefWorks;

e Chicago 16t edition;

e DOI
e Hard cover version
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