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LONG-TERM GOALS 
Optech International and the Department of Marine Science at the University of Southern 
Mississippi (USM) have partnered to develop and apply data fusion techniques to combine active 
and passive remote sensing data for mapping shallow-water and coastal environments.  During this 
reporting period we have: (1) established a collaboration between industry and academia focused on 
the use of bathymetric lidar and simultaneous passive spectral data for shoreline mapping and 
characterization; (2) produced a novel paradigm which can be used to formally compare and contrast 
different strategies for data fusion; (3) developed and implemented 3 high-level data fusion 
algorithms; (4) disseminated datasets to several other researchers; and  (5) worked to understand  
regional-scale coastal environmental processes through the use of these data. 

OBJECTIVES 

The objectives of this collaboration are: (1) to develop a number of new data fusion algorithms and 
computer programs to produce coastal and environmental information from SHOALS-1000TH data; 
(2) achieve increased accuracy of environmental information extracted from SHOALS-1000TH data 
through collection and analysis of in situ oceanographic ground truth; (3) facilitate the transfer of 
knowledge from academia to industry regarding the collection and use of in situ optical data; (4) 
facilitate the transfer of knowledge from industry to academia related to application of airborne lidar 
technology and sensor and data fusion techniques; and (5) facilitate the education of future 
researchers and workforce through the integration of these concepts into graduate level courses at 
USM. 
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APPROACH AND WORK PLAN 

To facilitate these objectives, we have worked on the following tasks: 
 

1. Validation and modification of techniques to estimate seafloor and water column properties 
through the use of coincident in situ data. 

2. Development of higher levels of data fusion with the SIT fusion model . 
3. Implementation of sensor and data fusion strategies for shoreline mapping and land-cover 

classification. 
 
In the first task, Optech International and USM worked closely with the Joint Airborne Lidar 
Technical Center of Expertise (JALBTCX) and the National Ocean and Atmospheric Administration 
(NOAA) to identify a location for a data collection campaign, and to gain access to the CHARTS 
system. We developed new procedures for acquiring and processing in situ data, and acquired new 
equipment for this purpose. We also developed procedures to share data within the team, and 
quickly disseminate it to other interested researchers. We scheduled a data collection campaign for 
the late spring of 2006, but unfortunately, the CHARTS system was not made available. 
Consequently, a new dataset was not collected and we instead used archived data for the research. 

In the second task, Optech International developed and utilized a data fusion paradigm (based on the 
SIT data fusion model presented in the original proposal) to describe the functionality of data fusion 
algorithms. Using this paradigm, we developed 3 new high-level data fusion strategies and 
implemented them in the IDL programming language. These new algorithms accomplish the 
increasing abstraction of information from data and move from discrete point measurements towards 
spatial objects.  

In the third task, we extended existing and new data fusion concepts onto the beach by combining 
topographic lidar data with passive spectral data. This work has led to fusion-based land cover 
mapping, and automated shoreline extraction and characterization. This work has also been coded in 
the IDL language. 

WORK COMPLETED 
During this reporting period, we accomplished work in three significant areas: data collection and 
distribution; development of a data fusion paradigm for high level data fusion; and the development 
of procedures to auto-extract and auto-attribute shoreline vectors. 

1. DATA COLLECTION AND DISTRIBUTION 
Optech International and USM personnel collaborated to plan a data collection campaign for the 
NOPP project. This work consisted of identifying a suitable location; making all necessary 
arrangements for boat and shore-side support; purchasing and calibrating required instrumentation; 
development of data processing protocols for the collection and processing of in situ data; and the 
design of the data acquisition scenario for the airborne data. However, due to mechanical problems 
with the CHARTS system, the government sponsor was unable to provide flight time. For this 
reason, we initiated research using data from the Optech International archives. 
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The archived datasets were from campaigns conducted by Optech International in the fall of 2004 
and the summer of 2005 in the vicinity of Fort Lauderdale, Florida (Figure 1). Both consist of 
simultaneously-collected bathymetric lidar and passive optical spectral imagery over coastal and 
near-shore waters, with ancillary ground control, and a few in situ measurements of spectral 
reflectance.  

 

             
Fig. 1. NOPP Data of Ft Lauderdale for November 2004 and June-July 2005. 

 
We give an overview of the available data in Table 1, and illustrate, in Figure 2, examples of the 
data. These data are the best available to support research for benthic and coastal mapping purposes. 
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To support similar investigations within the broader research community, we announced the 
availability of the data at three public venues: the International Laser Mapping Forum (ILMF) in 
Denver in February; the 7th Annual JALBTCX Coastal Mapping and Charting Workshop in Detroit 
in June; and at a presentation to the Russian Hydrographic Society in St. Petersburg, Russia, in 
November. Following these announcements, we received requests for data from 5 researchers (Table 
2) and have distributed customized datasets to them. We have also provided all data to personnel at 
JALBTCX for web-based distribution. 
 
    

Hyperspectral / laser data collected simultaneously 
 

UTM 17 WGS84 
Vertical reference:  GPS height above ellipsoid 

November 2004 …….CASI-2 passive hyperspectral  
July 2005 …………...CASI 1500 passive hyperspectral 
 
November 2004 …….SHOALS-1000 bathymetric laser  
July 2005 …………...SHOALS-3000 bathymetric laser  
 
July 2005 …SHOALS 20 kHz topographic laser July 2005 
 

 
 
 
 
 
 
 
 
                               
 
 
                     
 
 
 

Table 1. Metadata for the NOPP datasets. 
 
 
 

                                
 
Fig 2. Example of Airborne Data Used in NOPP:  Data from 2005 North Block Dataset: SHOALS Depths 
Shown as Topography (left); SHOALS Reflectance (center); and Casi Surface Reflectance (right). 
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Name Affiliation 

Dr. ChiQuei Wang University of Southern Mississippi 
Anders Knudby University of Waterloo 
Dr. William Philpot Cornell University 
Dr. Sam Purkis Nova S.E. Univeristy 
Dr. Alan Weideman U.S. Naval Research Lab 

 
Table 2. Other Researchers Supported with NOPP Data  

 
 
Unfortunately, the archived data are not well-supported with in situ measurements of the water 
column, and to date, a robust dataset supporting an analysis of optical closure for the airborne 
remotely-sensed data is not available. Recognizing this, a significant goal of our NOPP collaboration 
is to acquire a high quality airborne dataset with simultaneous in situ measurements of water column 
optical properties and seafloor reflectance. Although we were not able to conduct a data campaign 
during this reporting period, researchers at Optech International and the University of Southern 
Mississippi (USM) collaborated to identify the types of measurements desired (Table 2). 
Subsequently, personnel at USM began a systematic effort to acquire and calibrate the necessary 
equipment, and to develop data processing strategies to produce the desired data from the field 
measurements. 
 
 

Measurement Instrument Purpose 

Water column absorption (a) AC-9 / AC-S Evaluate accuracy of (a) estimated from 
SHOALS and Casi data 

Water volume backscatter (bb) Eco-VSF3 Evaluate accuracy of (bb) estimated from 
SHOALS and Casi data 

Water column attenuation (k) AC-9 / AC-S (absorption) 
EcoVSF3 (backscatter) 

Compare to attenuation derived from 
CASI and SHOALS data 

Water column attenuation (k) MicroProfiler  

(integrate irradiance with 
depth) 

Compare to attenuation derived from 
CASI and SHOALS data 

Water column beam attenuation 
(c) 

AC-9 / AC-S Evaluate the accuracy of (c) estimated 
from SHOALS data  

Water column reflectance (rrs) MicroProfiler Evaluate our characterization of CASI 
water column reflectance 

Water-leaving reflectance (rrs) ASD Evaluate atmospheric correction and 
surface correction of CASI data 

Seafloor reflectance DiveSpec Evaluate quality of seafloor reflectance 
estimates produced from SHOALS and 
Casi data. 

Table 2.  Summary of Desired In Situ Measurements. 
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During this reporting period, researchers at USM developed a protocol for collecting water column 
in situ measurements and developed a vertical water column profiling package using the 
instrumentation shown in Table 2. The various instruments have been integrated into a single 
package using the WETLabs, Inc. DH-4 data acquisition system (Figure 3).  

 

 

 
Fig.3. USM Instrument Frame With AC-9/AC-S and ECO-VSF3 Being Deployed in Gulf of Mexico for 
testing (Summer 2006). 
 
 

Researchers at USM coded algorithms within a Microsoft Excel and Visual BASIC  programming 
environment to enable quick processing of raw data from the in situ measurements. These 
algorithms include integration of optical and CTD measurements, application of various baseline 
corrections, and the conversion of raw data into necessary formats in geophysical units. The 
following objectives were addressed: 

 
(1) Application of ac-9/ac-s data corrections 

 
The thermal correction of a/c is performed as: 
 
aT corr(λ) = ameasured(λ) – ΨT(Tw - 25) - (aw(λ) - ΨT(Tcal - 25)) 
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cT corr(λ) = cmeasured(λ) – ΨT(Tw - 25) - (cw(λ) - ΨT(Tcal - 25)) 
 

where Tw and Tcal are the water temperature during sampling and calibration respectively.  aw(λ) is 
the clean water calibration value.  ΨT is given (Pegau et al. [1]) by: 

 

ΨT = ∑ { MT (M/σ) exp – [ (λ - λc)2 / 2σ2 ] } 
 

The magnitude, M, width, σ, central wavelength, λc, and temperature percentage multiplier, MT are 
taken from Table 3 of Pegau et al. [1]. 

The scattering correction on Zaneveld et al. [2] is also applied to the unfiltered a measurements: 

 
ascatter corr(λ) =   aT corr(λ) – [ cT corr(λ) - aT corr(λ) ) *  

{ aT corr(715) / (cT corr(715) - aT corr(715) } ] 
 

The absorption and attenuation of pure water at each wavelength can be added as desired.  The 
values for pure water a and c at each wavelength were compiled from published values of 
Sogandares and Fry [3], Pope and Fry [4], and Buiteveld et al. [5]. 

 
(2) Processing of VSF3 measurements 
 
The VSF has three sensor heads each providing measurements of scattering at three angles (100, 125 
and 150o).  Each sensor head operates at a different wavelength, either 440 nm, 532 nm, or 650 nm. 
A dark calibration of the ECOVSF3 is conducted prior to the start of the experiment to determine the 
zero offsets of the instrument.  This is done by carefully covering a portion of the quartz window 
over the light detector with electric tape. An average of the dark calibration counts at each angle and 
wavelength subsequently served as “zero offsets”.  Sensor output was adjusted for the appropriate 
zero offset, and then scaled by a weighting function to provide estimates of volume scattering at 
each angle. 

 
β(λ) = SF(λ) ( raw count(λ) – dark count(λ)) 
 
where SF(λ) is factory provided scaling factors. 
 

Backscattering coefficients, bb(λ), are estimated by fitting a third-order polynomial to the three 
values and integrating over angles from π to 2π.   Specifically, bb(λ) is computed in the following 
three steps: 

 
1) Multiple β(λ) by 2πsinθ where θ = 100º, 125º, or 150º ; 
2) Fit a 3rd order polynomial to the three measured points and a fourth value equal to zero at  

θ = 180 º ; 
3) bb(λ) is obtained by integrating under the curve fit from π/2 to π. 
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A further correction can be made for to correct backscattering measured with the ECOVSF3 for 
absorption of Twardowski et al., [6].  However, this results in only a minor adjustment for clear 
ocean waters (VSF3 User’s Manual: no attenuation coupling is required for c up to approximately 5 
m-1).  

 
(3) Conduct post processing of MicroPro 

 
MicroPro raw files are converted to calibrated geophysical data (Level 1 to Level 2) using the latest 
version of the Satlantic program ProSoft with raw data files and appropriate calibration files for the 
instruments as input.  Subsequent processing to derive profiles of spectral upwelling radiance (Lu), 
downwelling irradiance (Ed), and diffuse attenuation coefficient (Kd) are also performed using 
ProSoft. This program can also compute remote sensing reflectance, Rrs. Values of these quantities 
are as defined in Mobley [7].  

 
(4) ASD processing 

 
An Analytical Spectral Devices, Inc. (ASD) spectrometer will be used to measure in situ water-
leaving reflectance.  It is capable of measuring (1) irradiance (2) radiance.  Remote sensing 
reflectance is calculated by dividing water-leaving radiance by the downwelling total solar 
irradiance.  Thus, the irradiance foreoptic (diffuser) will be placed straight upward to measure 
downwelling solar irradiance on the ocean surface.  In order to measure water-leaving radiance, Lw, 
we will use the 10 degree field-of-view radiance foreoptic.  The measured total upwelling radiance 
includes some reflected diffuse skylight.  This is removed by measuring downwelling sky radiance, 
estimating the reflected fraction of downwelling sky radiance, and subtracting this from the total 
upwelling radiance.  It is also possible that upwelling radiance is contaminated by sun glint.  This 
contribution is minimized by restricting the azimuthal angle of the measurement to between 90-135o 
relative to the plane of the sun. However, some contribution by glint is still possible and a correction 
is made for this as well. The relative contributions of the direct solar beam and the diffuse sky 
irradiance to total solar irradiance will be determined by comparing measured total solar irradiance 
with that when the diffuser surface is shaded with a small disk. 

The computations involved in estimating water-leaving radiance, Lw, are explained below.  For (1) 
optically deep water (2) without the influence of the bottom, Lw is assumed to be near zero in the 
near IR:   

s
reflectedreflected

s
reflectedreflectedwu LLLLLL +=++= **  

 
We can utilize the spectral difference between sky path radiance, L*, and solar direct radiance, Ls.  
Thus, we express the total reflected radiance in the IR, , as a linear expression of the unknown 
relative amounts of the diffuse and direct components: 

uL

    
S

u LcLcL 2
*

1 += . 
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Then, the solution is obtained by 
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2. Development of High-Level Data Fusion Algorithms for Bathymetric Lidar and Spectral 
Data 

The main goal of this NOPP project is to develop sophisticated strategies for combining airborne 
remotely-sensed data for the purpose of mapping and monitoring the coastal zone. In the initial 
proposal, we advocated for the adoption of the SIT model as a data fusion paradigm, and discussed 
how it might be used to compare different approaches of combining active and passive data. The SIT 
model is unique because it describes the progression of a series of connected data processing 
modules leading to increased levels of abstraction in three domains: the spatial domain (wherein data 
are abstracted into objects); the information domain (wherein data are abstracted into identities); and 
the technique domain (wherein increasingly abstract and complex algorithms are employed).  

We show the SIT concept in Figure 3(a). Over the past year, researchers at Optech International 
have advanced the original SIT model by combining and adding fusion levels in the spatial and 
information domains. We illustrate the amended model in Figure 3(b). Here, the dotted line leading 
to I

xyzt 
indicates our desire to move to the highest levels of abstraction along both axes, with the 

ultimate goal of producing information about objects in the spatial domain at the time of 
observation. Here, we note the term feature is used on both axes. The SIT model resolves the 
ambiguity related to its dual use, and allows for the description of recursive and iterative processes.  

 

 

           
               (a)        (b) 

 
Fig. 3. The SIT Data fusion Model, (a) 3D SIT concept, (b) Spatial and Information Axes of SIT Model.  
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The SIT model can be used to describe complicated procedures with a simple graph. For example, 
one possible strategy for classifying the seafloor with SHOALS data alone is to use a Maximum 
Likelyhood Classifier on a multi-dimensional feature space of texture metrics extracted from Gray 
Level Co-occurrence Matrices. This procedure requires the computation of calibrated SHOALS 
waveforms at correct spatial coordinates; the estimation of depth, attenuation and reflectance from 
each waveform; the rasterization of the discrete point values into a spatial image; and the subsequent 
extraction of texture metrics and classification of individual pixels.  

This procedure encompasses the evolution of raw SHOALS data into spatial pixels and information. 
In Figure 4, we use the SIT model to illustrate it. Here, the numbered triangles represent individual 
data processing procedures, and the oval indicates the culmination of the process with an identity 
declaration for each pixel.  

 

             
Fig. 4. SIT Model Used to Illustrate Seafloor Classification with SHOALS Data 

 
 
The value of the SIT model is realized when one has the requirement to understand and compare 
more complicated procedures. For example, researchers at Optech International have developed 
algorithms to achieve an inversion of the radiative transfer equations for a passive spectrometer 
using the depth, attenuation, and reflectance estimated from SHOALS data as constraints [8]. This 
procedure leads to estimates of seafloor reflectance in the individual spectral channels of the passive 
imager, and ultimately to the use of spectroscopic techniques for classification of the seafloor from 
the spectral data.  
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We illustrate this process in Figure 5. Here, the triangles represent algorithms operating on the 
SHOALS data, and the squares represent algorithms operating on passive spectral imagery acquired 
by using a Casi instrument. The combined symbol at step 7 indicates a data fusion step, where the 
inversion of the imaging equations for the spectrometer is accomplished using lidar depth, 
reflectance, and attenuation as constraints. Finally, at step 8, an identity declaration is achieved for 
each pixel of the once-fused data. 
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Fig. 5. SIT Model Used to Illustrate Seafloor Classification in a Data Fusion Paradigm 

 

Comparison of Figures 4 and 5 allows one to quickly ascertain the basic evolutions of the data and to 
compare a lidar only procedure to a procedure based on data fusion. It allow indicates an important  
result: the two procedures lead to separate classifications of the seafloor. We now ask a new and 
critical question: what do we do if the two classifications do not agree? We believe the answer lies in 
the consideration of higher levels of data fusion on the information axis. For this reason, we 
extended our earlier definition of the information axis (as shown in the original proposal) to include 
a higher-level state, knowledge.  
 
We define knowledge as a state of information where we have resolved a conflict arising from 
disagreement of the individual identity declarations. Over the past year, we have worked to achieve 
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a state of knowledge by combining individual classifiers using Dempster-Shafer evidential theory 
[9]. This theory resolves the ambiguities by combining probabilities from the initial identity statements. We 
illustrate this higher-level procedure in Figure 6. Here, steps 5 and 10 represent the individual identity 
statements shown in Figures 4 and 5 respectively, and step 11 represents the state of knowledge achieved 
through use of the Dempster-Shafer process. 
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Fig. 6. SIT Model Used to Illustrate Higher-level Fusion Achieved with Dempster-Shafer Algorithm. 

 

In Figure 7, we show the three classification maps. The classification in 7 (a) was produced using 
the procedure shown in Figure 5. Here, a large attenuation boundary in the water column (clearly 
visible in Fig. 2) has not been completely compensated in the constrained inversion, and leads to a 
misclassification of the seafloor in the lower right part of the image. We performed an accuracy 
assessment using ground truth provided by personnel at the National Coral Reef Institute of Nova 
S.E. University (NSU), and determined the overall accuracy to be 61%. In 7 (b), the classification 
was produced from SHOALS data alone using the procedure illustrated in Figure 4, and the overall 
accuracy is 69%. In 7 (c), we have combined the initial classifications using the process shown in 
Figure 6, and this procedure yielded an overall accuracy of 89%. Because the classification images 
are co-registered to the depth data, we may easily produce a 3D classification map as shown in 
Figure 8. 
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                 (a) based on Fig. 5                                                                (b) based on Fig. 4 

Dempster-Shafer’s 
Evidential Theory

      
   
 
          

                                                         
                               (c) Based on Fig. 6 
 

           

Shallow sand Mid sand Channel sand Deep sand 

Hardbottom 1 Hardbottom 2 Hardbottom 3 Reef 
 

 

Fig. 7. Classification Maps Produced Using the Procedures Shown in Figs. 4, 5, and 6. 
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Fig. 8. 3-D sea floor pixel-level classification image 

 

These encouraging results support the original hypothesis that higher-level fusion on the information 

 spatially contiguous blobs from 

ow in Figure 13 (a) and (b) the blob images created from the Casi 

 

 

axis leads to higher classification accuracies. However, there has been no equivalent increase in the 
level of abstraction on the spatial axis. This increase must be achieved by considering spatial 
groupings of similar pixels to create blobs. A blob is defined in the computer and robot vision 
community as a region or group of connected components [10].  

We implemented a connected components operator to create
individual classified pixels. We show this procedure at steps 11 and 12 in the SIT data fusion model 
in Figure 9. Once the blobs are created, we invoke set theory to intersect the blobs, and pass the prior 
probabilities from the pixels to the blobs so that we may apply the Dempster/Shafer process at step 
13. To make this work, we computed prior probabilities for each blob by averaging the probabilities 
for the pixels within each blob. 

To illustrate these results, we sh
and SHOALS pixel classifications, and in (c) the intersected blobs. Here, the color scheme is used to 
indicate the presence of discrete blobs and should not be confused with colors used previously in the 
classification scheme. We also note the large number of blobs in (c). Our analysis revealed about 
70% of the intersected blobs represented conflict (the SHOALS blob did not agree in classification 
with the Casi blob) clearly indicating the need for implementation of a higher-level process on the 
information axis. 
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Fig. 9. Illustration of Higher-level Fusion on Bot  Information and Spatial Axes of the SIT Model 

 
hese results shown in Figure 11 are preliminary and are shown here only to illustrate progress 

h

T
towards the project goals. The blob-level fusion image generally looks to be a better classified 
image, but we have not fully resolved the processes of creating probabilities and propositions for the 
blobs, as required in the Dempster/Shafer algorithm, and make the process autonomous. Also, we 
are experimenting with alterative techniques for estimating probabilities from the Maximum 
Likelihood Operator. 
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       (a) CASI Blob Image (183 blobs)                             (b) SHOALS Blob Image (362 blobs) 
 
 

                                                
                                               (c) Intersected Blob Image (1199 blobs)  

 

Fig. 10. Blob images with 8-connectivity and 5 pixel minimum blob size. 
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Fig. 11. Blob-level Classification Produced Using Procedure Shown in Figure 9 

 

 

3. DEVELOPMENT OF DATA FUSION ALGORITHMS FOR TOPOGRAPHIC LIDAR 
AND SPECTRAL DATA 
The SHOALS-T bathymetric lidars produce topographic data when flown over the beach. Many 
users of bathymetric lidar data in the U.S. government are interested in shoreline studies and the 
combination of bathymetric and topographic lidar data is ideal for this purpose. For this reason, we 
have worked to develop auto-extraction and auto-attribution tools for shoreline and land-cover 
applications.  

Researchers at Optech International have developed a preliminary capability to produce land 
reflectance images at 532nm from the APD channel of the SHOALS lidar. We also developed 
techniques to boresight the CASI passive imager to these reflectance images. This procedure 
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produces a dataset containing heights, depths, SHOALS reflectance images, and a datacube of 
passive spectral reflectance computed by performing atmospheric correction of the airborne radiance 
data. 

The SHOALS land reflectance images are a novel product developed in this project. To compute 
them, we estimate reflectance from each calibrated waveform by isolating the timebin at the 
halfpower point of the surface return, as shown in Figure 12.  We then normalize the SHOALS time 
resolved digitized waveforms (Fig. 13) using a set of regression equations obtained during the 
calibration of SHOALS system.  
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Fig.12. A typical APD land return in the electrical domain. 
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Fig. 13. Normalized APD waveform. 
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We then compute the land reflectance as: 

 

                                  θθθπ
ρ cos/)(222 cos)cos/(

2
Hc

surfacetr
land AeH

PPA
⋅⋅

⋅⋅
=      

 
where, landρ  is the absolute reflectance and   is the SHOALS surface half power. surfaceP
  Is the atmosphere “attenuation” Ac
 H  Is the aircraft altitude 
  Is the transmitted power tP

 
To support the development of algorithms for shoreline mapping, we generated the beach zone 
image shown in Figure 14 by rasterizing the individual values of reflectance. Investigation of the 
pixel values in this image reveals the PMT channel often saturates over land. Also, there is an 
indication we ought to perform radiometric calibrations of the system at different background levels 
so that we can better compensate for changes in solar background at 532nm. These points indicate 
the need for further research. Never-the-less, preliminary analysis of the accuracy is encouraging. 
For example, we show in Table 3 that the SHOALS reflectance agrees well with values measured 
with a hand-held spectrometer over three landcover types, and they also agree well with values 
computed from the Casi airborne spectrometer. 

 

Reflectance (%) Easting Northing 
ASD CASI SHOALS

Description 

2873448 588260 30 26 26 Beach Sand 
2873437 588234 13.5 14 12.7 Green Tennis Court 
2878056 588169 5 9 9 Grass 

Table 3. Comparison of Reflectance Values Measured with SHOALS, Casi, and ASD 
 
 
One routine but challenging task in the processing of airborne passive spectral images is the 
boresight alignment of the imager. The boresight alignment computes the offsets from the individual 
components of the navigation system to the imaging sensor head. The computation is essentially a 
coordinate transformation requiring the measurement of a number of points on both the images and 
the ground. The required ground control point measurements can be expensive and difficult to 
acquire. In this project, we developed a procedure to use SHOALS reflectance images (Fig. 14) in 
lieu of ground control to accomplish this task. This process has subsequently proved to be effective 
and efficient, and yields images of the type shown in Figure 15.  
 
To check the accuracy of the spatial coordinates of the derived Casi images, we compared the image 
to ground points surveyed using GPS techniques and determined the average errors in horizontal 
coordinates to be less than one pixel in both coordinates. 
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Fig. 14. Reflectance image generated using the APD channel 
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Fig. 15.  CASI-1500 hyperspectral imagery (left) and topographic laser elevation data (right) with 
extracted ground control points (+).  Data acquired over Hallandale Beach, Florida, July 2005.  

These data are available through NOPP. 

 
 
Using the co-registered SHOALS lidar and Casi spectral data shown in Figure 15, Dr. George Raber 
of USM has developed high-level data fusion algorithms to accomplish land-cover classification and 
auto-extraction and auto-attribution of shoreline vectors. This work has been accomplished wholly 
under this NOPP project, and in collaboration with Dr. J.Y. Park of Optech International.  

The procedure to accomplish topographic classification combines several innovations. For example, 
in the SIT model in Figure 16 we see in Step 7 a mean-shift algorithm is used to segment the Casi 
image into blobs. These blobs represent spectrally homogeneous areas within the Casi reflectance 
images (Figure 17).   
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Fig. 16. SIT Model Illustrating Rule-based Topographic Classification 

 

 
Fig. 17. Topographic Blobs Produced from Casi Data with Mean Shift Algorithm 
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The lidar data within these spatial blobs are subsequently used in step 8 of Figure 16 to extract and 
attribute several morphological features (Table 4) to the blobs as demonstrated in Figure 18. 
 

    Description 
Shape Statistics Area, Perimeter, Compactness, Fractal Dimension 

LIDAR Basic Statistics Mean, Median, Range, Portions of the Mean and Range (e.g. 
10% to 90%), Standard Deviation, Skewness, Kurtosis 

LIDAR Vertical 
Distribution Statistics 

Vertical Histogram of Z values, Cumulative histogram 
normalized to 1. 

LIDAR Spatial 
Autocorrelation Statistics 

Empirical Semi-variance calculated at a number of different 
lag values.  

LIDAR Curve fit 
Statistics 

The residual is calculated for fitting a 1st – 5th order 
polynomial curve through the segments z values.  

Hyperspectal Data 
Statistics 

Mean, Range and Mean of the middle 80% of the data are 
calculated. 

Table 4. Morphological Descriptors Assigned to Blobs 
 
 
 

              
Fig. 18. IDL code for the attribution of the image segments with the segments listed in an ESRI 

dialog. 
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The blobs are eventually classified in step 9 with a rule-based technique. The required rules are 
created using an automated rule generator to analyze training data specified by the user for each land 
cover class.  We show an example decision tree structure generated for this project in Figure 19. 

 

                 
Fig. 19. Decision Tree Used to Accomplish Topographic Classification 

 
In Figure 20, we show a preliminary topographic classification achieved using the SIT model shown 
in Figure 16, and a color composite image of the Casi hyperspectral surface reflectance data. The 
classes used are not part of an accepted classification scheme, but were selected to facilitate the 
development of the procedure. The resulting classification is approximately 80% correct when 
analyzed using a subset of training data withheld for this purpose. The largest misclassifications 
occur in heavily shadowed areas. 
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        (a) False-color Composite from Spectral Data 

 
 
 

             
                                                      (b)  Topographic Classification 

 

             Fig. 20. Illustration of the Topographic Classification Procedure Shown in Figure 16  
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The combined topographic and hydrographic data produced by the SHOALS lidar can be used to 
generate a seamless 3D dataset of the beach and shallow water seafloor. Consequently, geometric 
shoreline vectors can be auto-extracted from the data as contours of the appropriate height, and the 
resulting line segments can be subsequently intersected with the topographic classification map to 
accomplish an auto-attribution of the shoreline vector.  

We have created a procedure to accomplish auto-extraction and auto-attribution of shoreline vectors. 
This procedure requires 4 inputs: 

• a classification map of the beach area  
• a DEM derived from SHOALS data that includes both underwater and land elevation values.  
• a file containing locations of NGS Tide Gauges with offset to desired vertical datum (e.g. 

MLLW, MHW) 
• a parameter file supplying smoothing factors for each class type.  

 
Using the tide station data, we convert the height values in the DEM to the datum of interest, and 
extract the contour. Because the height data can be noisy, and the DEM usually contains voids 
caused by missing depths in the hydrographic survey data, we apply spatial smoothing techniques to 
the height data prior to extraction of the contour. We then select the longest contour to represent the 
shoreline. The shoreline vector is then intersected with the classification image, and a one-
dimensional smoothing is performed on the vector to generate a more visually appealing 
cartographic feature. The vector is subsequently subdivided and attributed with the classification 
type, and the final result is stored as an ESRI shapefile. This procedure is implemented entirely in 
IDL/ENVI, and does not rely on any external programs.  We have conducted preliminary tests of the 
procedure using the Fort Lauderdale data.  

We demonstrate test results in Figures 21, 22, and 23. For this test, we used a datum conversion 
from WGS84 (ellipsoid height) to NAVD88 (orthometric height) of 28.1 feet, and extracted a 
NAVD88 shoreline vector. Within the study area, only one landcover class (beach) exists along the 
coast. In order to demonstrate the adaptive smoothing and auto-attribution capabilities, we arbitrarily 
introduced an additional class. 

In Figure 21, we show the auto-extracted, auto-attributed NAVD88 shoreline on a gray scale image 
of the DEM. Here, the orange and magenta sections of the vector represent different shoreline 
attributes. In Figure 22, we show a detail view of the vector, and illustrate the application of 
different amounts of spatial smoothing applied to the different shoreline attributes. Finally, we show 
in Figure 23 the resulting shoreline on a color composite image generated from the Casi spectral 
data. 

Several members of the research team recognize the challenges associated with production-level 
implementation of shoreline mapping. The results shown are promising, but are only a beginning. 
The procedure must be made more robust to handle complicated shorelines, and it must be tested 
with other datasets. Also, we must decide upon and implement a topographic classification scheme 
for the initial classification that permits a useful auto-attribution of the shoreline segments. 
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Fig. 21. An overview of the auto generated shoreline on top of the shoals DEM.  The boxed area 

indicates the area of detail for the next two figures. 

 
 
 

                    
Fig. 22. A detail of Fig. 21.  Note the magenta line has been smoothed more than the orange line. 
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Fig. 23. Shoreline vector depicted on a color composite of the hyperspectral data.  The area is the 
same as Fig. 22. 

 

RESULTS 
During this reporting period we have produced significant results in three aspects of the project: data 
collection and dissemination; refinement of the SIT model for describing and analyzing data fusion 
procedures; implementation of several high-level data fusion procedures; and the implementation of 
a data fusion strategy for auto-extraction and auto-attribution of shoreline vectors. 

We organized and fully processed several datasets from Optech International’s data archive (Table 
1) and subsequently used these data to support the research goals of this project. We also shared 
these data with several other researchers (Table 2), and made them available on the web. We 
acquired new optical equipment for the measurement of water column insitu data (Figure 3), and 
developed algorithms and software to conduct measurements during future field campaigns.  

We refined the SIT data fusion model, and used it to develop, analyze and compare 5 data 
processing scenarios (Figures 4,5,6,9, and 16). Within Optech International, the project manager and 
the software development team adopted the SIT model as a valuable tool to discuss and compare 
different strategies, and it has proved to be useful for the management of software development. We 
presented the SIT model at two international remote sensing conferences and discussed its use and 
value with colleagues in the industry. 
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We conceived and implemented 3 high-level data fusion algorithms: a Dempster-Shafer algorithm 
for combining prior classifications from the lidar and spectral data (Figure 6); a procedure to 
combine blobs extracted separately from the two instruments (Figure 9); and a rule-based decision 
procedure to combine topographic data (Figure 16). 

Using the results shown in Figure 16, we developed a procedure to auto-extract and auto-attribute 
shoreline vectors (Figures 21, 22, and 23).  To support this effort, we developed methods to use the 
lidar reflectance images to boresight the spectrometer, and this procedure assures the availability of 
co-registered data. 

IMPACT AND APPLICATIONS  

National Security  
We believe the best strategy for mapping and monitoring the shallow waters and beach areas of the 
coastal zone is to combine simultaneously-acquired active and passive image data. To date, data 
fusion strategies for this purpose have been developed in an ad hoc fashion. In this NOPP project, 
we have developed and implemented the SIT data fusion model, and used it to develop and compare 
alternate strategies for the combination of active images from the green lidar and passive spectral 
data from an imaging spectrometer. As anticipated in our original proposal, we have found higher-
level data fusion strategies deliver better results for classification purposes. 

Economic Development  
We believe the new data fusion tools developed in this project will be implemented in commercial 
airborne remote sensing systems.  Also, the collaboration between industry and academia established 
in this project has led to a more robust collaboration between Optech International and the 
University of Southern Mississippi forming the basis of a center of expertise in airborne lidar for 
bathymetric mapping.  

Quality of Life  
Data fusion techniques developed in this NOPP project should have application to benthic habitat 
mapping projects designed to map and monitor fish habitat and coral reef health. 

Science Education and Communication  
Prior to this project, no university in the world had a program of instruction covering bathymetric 
lidar. Over the past year, USM has integrated bathymetric lidar into its curriculum and into its 
research. Furthermore, USM’s research capabilities in the field of ocean optics have proved valuable 
in the development of algorithms at Optech International for benthic mapping. 

TRANSITIONS   

Quality of Life  
As part of JALBTCX, the U.S. Army Corps of Engineers and NOAA presently operate an airborne 
system capable of simultaneously measuring airborne active and passive data. The algorithms and 
software developed in this NOPP project have been delivered to personnel at JALBTCX. 
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Science Education and Communication  

The data fusion paradigm developed in this partnership, and the datasets have been shared with  
interested researchers at other universities.  

RELATED PROJECTS 
Subsequent to the award of this NOPP project, Optech International received a contract from the 
U.S. Office of Naval Research (ONR) to use bathymetric lidar combined with passive spectral data 
for seafloor classification as it relates to the detection of mines. This project is named: Counter-mine 
Lidar UAV-based System (CLUBS).  Optech International received a second contract from the U.S. 
Army Corps of Engineers to develop a new generation of bathymetric lidar systems: the Coastal 
Zone Mapping and Imaging Lidar (CZMIL). These three projects are distinct, but have some 
commonality. For example, all three involve collaborations between Optech International and the 
University of Southern Mississippi. The data fusion paradigm developed in the NOPP project will be 
used to formulate, present, and quantify the work in CLUBS and CZMIL. A number of personnel at 
Optech will work on both projects.  
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